
  

11  Frequency Analysis 
 

 

Extreme rainfall events and the resulting floods can take thousands of live and 

cause billions of dollars in damage. Flood plain management and design of flood 

control works, reservoirs, bridges, and other investigations need to reflect the 

likelihood or probability of such events. Hydrological studies also need to address 

the impact of unusually low rainfalls causing low stream flows which affects for 

example water quality and water supply.  

 

The term frequency analysis refers to the techniques whose objective is to analyze 

the occurrence of hydrologic variable within statistical framework, by using 

measured data and basing predictions on statistical laws.  

 

Frequency analyses try to answer the following problems:  

 

(1)  Given n years of daily streamflow record for stream X, what is the 

maximum (or minimum) flow Q that is likely to recur with a 

frequency of once in T years on average?    

 

(2)  What is the return period associated with a maximum (or 

minimum) flow Q.  In more general term, the preceding questions 

can be stated as follows: given n years of streamflow data for 

stream X and L years design life of a certain structure, what is the 

probability P of a discharge Q being exceeded at least once during 

the design life L?. 

 

Frequency analysis is made using appropriate probability distribution function to 

the random variable under consideration. The next section briefly summarizes 

probability distribution functions commonly used in hydrology. 

  

11.1 Concepts of statistics and probability 

   

Hydrological processes evolve in space and time in a manner that is partly 

predictable, or deterministic and partly random, and such processes are called 

stochastic processes. In this chapter, pure random processes are discussed using 

statistical parameters and functions. 

chapter onePage 1 of 31

acer
Typewritten text
Chapter One



Frequancy analysis 

______________________________________________________________________________ 

  

 

Let X is a random variable that is described by a probability distribution function 

and represent for example annual rainfall amount at a specified location. Let a set 

of observations x1, x2, …, xn  of this random variable sample be drawn from a 

hypothetical infinite population possessing constant statistical properties that is 

stationarity (having no significant trend and variation in variance).  

 

Defining sample space as a set of all possible samples that could be drawn from 

the population, and an event as a subset of the sample space; the probability of an 

event A, P(A), is the chance that it will occur when an observation of the random 

variable is made. 

 

If a sample of n observation has nA values in the range of event A, then the 

relative frequency of A is  

 

 

and the P(A) is given by 

 

 

The basic three probability laws are: 

 

(1) Total probability law:  If the sample space  is completely divided into m 

non overlapping areas or events A1, A2, …, Am  then 

 

P(A1) + P(A2) + …+ Am = P() = 1             

(11.3) 

 

(2) Complementarity: It follows that if A

 is the complement of A, that is A


  = 

 - A, then 

P(A

) = 1 – P(A)      (11.4) 

 

(3) Conditional probability:  
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The above equation being read as P(B/A) the conditional probability that event B 

will occur given that event A has already occurred is P(A  B) the joint 

probability that events A and B will both occur divided by P(A) the probability of 

event A occurrence.   

 

Example 11.1.  The values of annual rainfall at Addis Ababa from 1900 to 1990 are 

given in Table E11.1. Plot the time series and find the probability that the 

annual rainfall R in any year is less than 1000 mm, greater than 1400 mm 

and between 1000 and 1400. 

 

Solution. The annual rainfall R at Addis Ababa over 90 years from 1900 to 1989 is 

plotted in Figure E11.1. We see that there was extreme rainfalls in years 1947 (1939 mm) 

and in year 1962  (903 mm).   

 

 
Table E11.1: Annual rainfall amounts (mm) at Addis Ababa, Ethiopia, 
1900 to 1989.   

year 1900 1910 1920 1930 1940 1950 1960 1970 1980 

0 1164 1270 1077 1460 937 946 1009 1423 1255 

1 1241 1244 1041 1023 1105 935 1365 1175 1175 

2 986 1162 1560 976 1154 1101 904 938 1209 

3 1433 1175 1282 1181 1055 922 1015 1274 1192 

4 1112 1439 1200 1027 1083 1199 1275 1192 1128 

5 1101 1901 1179 1283 1006 1277 963 930 1190 

6 1545 1729 1595 1419 1362 1025 1225 1124 1234 

7 1047 1590 1271 1099 1939 1318 1167 1473 1212 

8 1133 962 1343 1054 1313 1311 1102 1045 1203 

9 1265 992 1245 1134 1354 1028 1328 1262 1324 

          

          

 

There are  n  = 1989 – 1900 + 1 = 90 data points. Let A be the event R < 1000 mm,  B is 

the event R > 1400 mm.  The number of events falling in these ranges are nA = 12, nB = 

13. 

 

So the   P(A)  12 / 90 = 0.133 

P(B)  13 / 90 = 0.144, and  

P( 1000 < R < 1400)  = 1 – P(A) – P(B) 

 = 1- 0.133 – 0.144 = 0.723 = 65/90. 
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11.1.1 Frequency and probability functions. 

 

Relative frequency function fs (x) is given by 

 

The number of observations ni in interval I, covering the range [xi – x, xi]. 

Equation 11.6 is an estimate of P(xi – x,  X  xi), that is the probability that the 

random variable X will lie in the interval [xi – x, xi]. 

 

Frequency histogram is used to display the distribution of frequencies over 

selected intervals. For example, the frequency histogram for the rainfall at Addis 

Ababa with x  = 50 mm is given in Figure E11.2.  
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Figure E11.1:  Frequency histogram of the Addis Ababa annual rainfall (1900 - 1989) 

 

 Cumulative frequency function Fs(x) is given by  

   

 

This is an estimate of  P(X  xi), that is the cumulative probability of xi.  

 

Probability density function us defined as: 

 

and the probability distribution function is defined as  

 

 

  and 

 

Note that the relative frequency, cumulative frequency and probability 

distribution functions are all dimensionless function varying over the range [0, 1]. 
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However the probability density function f(x) has a dimension [x]
–1

 and varies 

over the range [0, ) and has the property of: 

  

 

 

 

 

 

 

 

 

               a     b   x 

 

Figure 11.2: A probability density function 

 

 

One of the best-known probability density functions is that forming the familiar 

bell-shaped curve for the normal distribution: 

 

 

Where mean  and standard deviation  are the parameters of the normal 

distribution. 

 

Defining standardized normal variable z as  
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The standard normal probability distribution function is then 

 

 

 
 

 

Example 11.2.  The annual mean flows of a certain stream have been found to be 

normally distributed with mean 90 m
3
/s and standard deviation 30 m

3
/s. 

Calculate the probability that a flow larger than 150 m
3
/s will occur. 

 

Solution.  Let X be the random variable describing annual mean flow of the river given 

above. The standardized variable   

 

z value for flow equal to 150 m
3
/s is  (150-90)/30 = 2.00 
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The required probability is that  P(X  > 150 m
3
/s) = P(z > 2.0) 

 

It is known that P(z > 2.0) = 1- P(z < 2.0) = 1- F(2). = 1 – (0.5 + 0.4772) = 0.0228. 

 

So the probability that a flow larger than 50 m
3
/s will occur is 0.0228. 

 

11.3  Statistical parameters 

 

The objective of statistics is to extract the essential information from a set of data. 

Statistical parameters are characteristics of a population, such as  and . A 

statistical parameter is the expected value E of some function of a random 

variable. 

 

The sample mean       is calculated from  

 

 

The variability of data is measured by the variance 
2
 and is defined by: 

              

The sample variance s
2
 is estimated by 
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And sample CV is estimated by  s /  

 

The symmetry of a distribution about the mean is measured by the coefficient of 

skewness : 

 

 

Sample estimate  

 

 

 

Example 11.3:  Calculate the sample mean, sample standard deviation, and 

sample coefficient of skewness of the Addis Ababa rainfall 

given in Example 11.1. 

 

Solution: Sample mean is calculated from Eq. (11.16) 

 

 

  Sample standard deviation is  

 

 

Sample skewness is 
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11.4 Fitting data to a probability distribution  

 

As discussed in the previous section, a probability distribution is a function 

representing the probability of occurrences of a random variable. By fitting a 

distribution to a set of hydrologic data, a great deal of the probabilistic 

information in the sample can be compactly summarized in the function and its 

associated parameters. Two methods can be used for fitting a probability 

distribution: the first is the method of moment and the second is the method of 

maximum likelihood. 

 

The method of moment. The principle in the method of moment is to equate the 

moments of the probability density function about the origin to the corresponding 

moments of the sample data.  

 

           f(x)dx  
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Example11.4:  The exponential distribution  can be used to describe various kinds of 

hydrologic data, such as the interval times between rainfall events. The 

probability density function is given by 

 

 

Determine the relationship between the parameter  and the first moment about the origin 

. 

 

Solution: 

 

 

The method of maximum likelihood. The central principle in the method of 

maximum likelihood is that the best value of a parameter of a probability should 

be that value which maximizes the likelihood or joint probability of occurrence of 

the observed sample. 

 

Let a sample of independent and identically distributed observations x1, x2, …, xn 

of interval dx be taken. P(X= xi) = f(xi) = the value of the probability density for 

X = xi if f(xi), and the probability that the random variable will occur in the 

interval including xi is f(xi)dx. Since it is assumed that the observations are 

independent, the joint probability of occurrence is simply the product of the 

probability of the observations, thus the joint probability of occurrence is  

      

 

          (11.22) 

 

The likelihood function L is given by 

 

 

          (11.23) 

Or ln(L) is 
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Example 11.5:  The following data are the observed times between rainfall events at a 

given location. Assuming that the inter-arrival time of rainfall events follows an 

exponential distribution; determine the parameter  for this process by the method of 

maximum likelihood. The time between rainfall events (days) are: 2.2, 1.5, 0.6, 3.4, 2.1, 

1.3, 0.8, 0.5, 4.0, and 2.5. 

 

Solution:  

 

The log-likelihood function is  

 

 

The maximum value of ln(L) occurs when  

 

 

Thus  

 

 

Testing goodness of fit. By comparing the theoretical and sample values of the 

relative frequency or the accumulative frequency function, one can test the 

goodness of fit of a probability distribution. In the case of the relative frequency 

function, the 
2
 test is used. The sample value of the relative frequency of interval 

i is calculated using Eq. (11.6)  
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The 
2
 test statistic        is given by 

 

           

         (11.25) 

 

 

Where  m = the number of intervals.  

 

To describe the 
2
 test, the 

2
 probability distribution must be defined. A 

2
 

distribution with v degrees of freedom is the distribution for the sum of squares of 

v independent normal random variables zi; this sum is the random variable 

 

           

          (11.26) 

 

 

The 
2
 distribution function is tabulated in Annex 1. In the 

2
 test, v = m - p- 1, 

where m is the number of intervals as before, and p is the number of parameters 

used in fitting the proposed distribution. A confidence level is chosen for the test; 

it is often expressed as 1 - , where  is termed the significant level. A typical 

value for the confidence level is 95 percent. The null hypothesis for the test is that 

the proposed probability distribution fits the data adequately. This hypothesis is 

rejected (i.e., the fit is deemed inadequate) if         value of  in Eq. (11.25) is larger 

than a limiting value,  

 

 

 

as determined from the 
2
 distribution with v degrees of freedom as the value 

having cumulative probability 1 - . 

 

11.5.  Common probabilistic models 

 

Many discrete probability mass functions and continuos probability density 

functions are used in Hydrology. The most common are the binomial, 
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Pearson Type III) and Gumbel (extreme value type I). A description of some 

commonly used probability distribution in hydrology is given below. 

 

11.5.1  The Binomial distribution 

 

It is common to examine a sequence of independent events for which the outcome 

of each can be either a success or a failure; e.g., either the T-yr flood occurs or it 

does not. Such a sequence consists of Bernoulli trials, independent trials for which 

the probability of success at each trial is a constant p. The binomial distribution 

answers the question, what is the probability of exactly x successes in n Bernoulli 

trials? 

 

The probability that there will be x successes followed by n-x failures is just the 

product of the probability of the n independent events: p
x 

(1-p) 
n-x

. But this 

represents just one possible sequence for x successes and n-x failures; all possible 

sequences must be considered, including those in which the successes do not 

occur consecutively. The number of possible ways (combinations) of choosing x 

events out of n possible events is given by the binomial coefficient 

 

 

(11.27) 

 

 

Thus, the desired probability is the product of the probability of any one sequence 

and the number of ways in which such a sequence can occur is  

 

 

(11.28) 

 

Where x = 0, 1, 2, 3, …, n. 

 

The mean and the variance of x are given by 
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The skewness is 

 

(11.31) 

 

 

Example 11.6: Consider the 50-yr flood, that is a flood having a return period of 50 

years, T = 50 years, and then the probability of exceedence is given by P( the flood > x 

value) = p = 1/T = 0.02. 

(a) What is the probability that at least one 50-yr flood occur during the 30-yr 

life time of a flood control project?  

(b) What is the probability that the 100-yr flood will not occur in 10-yr? In 100 

yr? 

(c) In general what is the probability of having no floods greater than the T-yr 

flood during a sequence of T yr? 

 

Solution: (a) The probability of occurrence in any one year (event) is p = 1/T . The 

probability (at least one occurrence in n events) is called the risk. Thus the risk is the sum 

of the probabilities of 1 flood, 2 floods, 3 floods, …, n floods occurring during the n-yr 

period. In other words, risk is 1- probability of no occurrence in n yr [1-P(0)].  

 

 

 

 

Risk     = 1 – P(0)   

= 1- (1-p)
n
 

= 1 – (1 – 1/T)
n 

 

Reliability =  1 -  Risk 

 

For the problem at hand, p = 1/T = 1/ 50 = 0.02 

 

Risk = 1 – (1 – 1/T)
n 

           =  1- (1 – 0.02)
30

 

           = 0.455 

 

(b) Here p = 1/100 = 0.01, for n =10 yr, P(x =0) = 0.92. For n =100, P(x=0) =0.37. 

 

(c) P (x =0) = (1 – 1/T)
T  

 as T gets larger, P (x=0) approaches 1/e = 0.368. The Risk of 

flooding in T –yrs  is then 1- 0.368 = 2/3. 
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Example 11.7:  A cofferdam has been built to protect homes in a floodplain until a major 

channel project can be completed. The cofferdam was built for the 20 –yr 

flood event. The channel project will require 3-yr to complete. What are 

the probabilities that: 

(a) The cofferdam will not be overtopped during the 3 yr (the 

reliability)? 

(b) The cofferdam will be overtopped in any one year? 

(c) The cofferdam will be overtopped exactly once in 3 yr? 

(d) The cofferdam will be overtopped at least once in 3 yr (the risk) 

(e) The cofferdam will be overtopped only in the third year? 

 

Solution: 

(a) Reliability = (1 – 1/T)
n

 = (1 – 1/20)
3 
= 0.86 

(b) Prob = 1 /T = 0.05 

 

 

(c) 

 

 

(d) Risk = 1 – Reliability = 0.14 

 

(e) Prob =(1-p)(1-p)p =0.95 
2
. (0.05) = 0.045 

 

11.5.2  The exponential distribution: 

 

Consider a process of random arrivals such that the arrivals (events) are 

independent, the process is stationary, and it is not possible to have more than one 

arrival at an instant in time.  If the random variable t represents the inter-arrival 

time (time between events), it is found to be exponentially distributed with 

probability density function of 

 

(11.32) 

 

The mean and the variance of t: 

 

 

(11.33) 

(1134) 

The skewness is 2. 
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(11.35) 

 

Example 11.8. During the course of a year, about 110 independent storm events occur at 

a given location, and their average duration is 5.3 hours. Ignoring 

seasonal variations, a year of 8760 hours, calculate the storm average 

inter-arrival time. What is the probability that at least 4 days = 96 hr 

elapse between storms? What is the probability that the separation 

between two storms will be less than or equal to 12 hrs. 

 

Solution: the average inter-event  time is estimated by subtracting the total rainfall 

periods from the total hours (rainy and non-rainy) and dividing by the number of rainfall 

events.  

 

The inter-event  time = (8760 –110*5.3)/110 = 74.3 hr. and  = 1/74.3 = 0.0135. 

 

The probability that at least 4 days = 96 hr elapse between storms is Prob (t   96) = 1 – F 

(96) =  e
(-0.0135*96)

.  

 

The probability that the separation between two storms will be less than or equal to 12 hrs 

is Prob (t  < 12) = F (12) =  1- e
(-0.0135*12)

. = 0.15 

 

11.5.3   Extreme value distribution 

 

Many time interests exist in extreme events such as the maximum peak discharge 

of a stream or minimum daily flows. The extreme value of a set of random 

variables is also a random variable. The probability distribution of this extreme 

value random variable will in general depend on the sample size and the parent 

distribution from which the sample was obtained.  

 

The study of extreme hydrological events involves the selection of a sequence of 

the largest or smallest observations from sets of data. For example, the study of 

peak flows uses just the largest flow recorded each year at a gauging station - for 

30 years of data only 30 points are selected. 

 

Gumbel distribution: Extreme Value Type I 

 

The extreme Value Type I (EVI) probability distribution is 

 

 

(11.36) 


 x
ux

xF ))exp(exp()(

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The parameters are estimated by: 

 

 

(11.37) 

 

 

 

A reduced variate y can be defined as: 

 

 

(11.38) 

 

Substituting the reduced variate into Eq.(11.37) yields 

 

F(x) = exp(-exp(-y))     (11.39) 

 

Solving for y: 

 

 

(11.40) 

 

 

The return period and the cumulative probability function is related by 

 

P(X  xT) = 1/T  

 

  = 1- P(X < xT ) 

 

 = 1- F(xT)  

Also 

 

F(xT) = (T-1)/T  

 

And finally we get y in terms of return period for EVI distribution: 

 

 

(11.41) 
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and related to xT by 

xT = u + yT       (11.42) 

 

 

Heavy storm are most commonly modeled by the EVI distribution. 

 

Example 11.9. Annual maximum values of 10-minutes-duration rainfall at Chicago, 

Illinois, from 1913 to 1947 are given in Table E11.9. Develop a model 

for storm rainfall frequency analysis using Extreme value Type I 

distribution and calculate the 5-, 10-, and 50 – year return period 

maximum values of 10-minute rainfall at Chicago. 

 
Table E11.2. Annual maximum 10-minutes rainfall (mm) at Chicago, Illinois, 

1913-1947 

Year 10-min R (mm) Year 10-min R (mm) 

1913 12 1930 8 
1914 17 1931 24 

1915 9 1932 24 

1916 15 1933 20 
1917 10 1934 16 

1918 12 1935 18 

1919 19 1936 28 

1920 13 1937 16 
1921 19 1938 13 

1922 14 1939 16 

1923 20 1940 9 
1924 17 1941 18 

1925 17 1942 14 

1926 17 1943 23 

1927 15 1944 17 
1928 22 1945 17 

1929 12 1946 16 

  1947 15 

 

Solution: The sample moments calculated from the data in Table E11.2. The mean is 

16.5 mm and the standard deviation is 4.5 mm. 

 

The parameters of the EVI distribution is then: 

 

 

 

 

 

 
4.145.3*5772.05.165772.0

5.3
5.466




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The probability model is 

 

 

 

 

 

 

To determine the values of xT for various of return period T, it is convenient to use the 

reduced variate yT given by Eq. (11.41). For T = 5 years 

 

 

 

 

And Eq. (11.42) yields 

 

xT = u +yT 

   =14.4 + 3.5 x 1.500 

   =  19.6 mm. 

 

By the same method, the 10-, and 50- year values are estimated to be 22.4 mm and 28.2 

mm respectively. 

 

It may be noted from the data in Table E11.2 that the 50-year return period rainfall was 

equaled once in the 35 years data (in 1936), and that the 10-year return period rainfall 

was exceeded four times during this period.  

 

Extreme Value Type III  (Weibull) distribution – Low flow analysis: 

 

Weibull distribution has found greatest use in hydrology as the distribution of low 

stream flows.  It is defined as: 

 

(11.43) 

 

 

The cumulative Weibull, F(x), is given by 

 

 (11.44) 

 

The mean and the variance of the distribution are: 
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(11.45) 

 

 

(11.46) 

 

 

Where  is a displacement parameter to create 0 as the lower bound of the 

parameter x. 

 

The estimate of the parameters is done using: 

 

(11.47) 

 

(11.48) 

 

Where A() and B() is taken from Table 11.2. 

 

 

 

Example 11.10: The minimum annual daily discharge on a stream are found to have an 

average of  4.6 m
3
/s, a standard deviation of  1.8 m

3
/s and a coefficient of 

skew of 1.4.  Evaluate the probability of the annual mean flow being less 

than 3.69 m
3
/s. 

 

Solution:  Weibull distribution is used here for low flow analysis 

 

Using estimated coefficient of skewness value  = 1.4 , then the corresponding 

parameters are read from Table 11.2. 

 

  1/ = 0.79, A() =  0.098,    B() = 1.36 

 

estimates of        = 1.266,  

  

)/11()()(  XE

)]/11()/21([)()( 22  XVar

)( A

)( B
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Table 11.2. Values of A() and B() 

 (Skewness) 1/ A() B() 

-1.000 0.02 0.446 40.005 

-0.971 0.03 0.444 26.987 

-0.917 0.04 0.442 20.481 

-0.867 0.05 0.439 16.576 

-0.638 0.10 0.425 8.737 

-0.254 0.20 0.389 4.755 

0.069 0.30 0.346 3.370 

0.359 0.40 0.297 2.634 

0.631 0.50 0.246 2.159 

0.896 0.60 0.193 1.815 

1.160 0.70 0.142 1.549 

1.430 0.80 0.092 1.334 

1.708 0.90 0.044 1.154 

2.000 1.00 0.000 1.000 

2.309 1.10 -0.040 0.867 

2.640 1.20 -0.077 0.752 

2.996 1.30 -0.109 0.652 

3.382 1.40 -0.136 0.563 

3.802 1.50 -0.160 0.486 

4.262 1.60 -0.180 0.418 

4.767 1.70 -0.196 0.359 

5.323 1.80 -0.208 0.308 

5.938 1.90 -0.217 0.263 

6.619 2.00 -0.224 0.224 

7.374 2.10 -0.227 0.190 

8.214 2.20 -0.229 0.161 

 

 

     

 

 

 

Prob (X  3.7) = F(3.7)  is give by   

 

 

 

       = 0.368 

 

 

11.5.4  Frequency Analysis using Frequency Factor 

 

8.4)098.0(8.16.4)(   A

4.2)36.1(8.18.4)(   B

)))4.28.4/()4.27.3((exp(1)7.3( 266.1F
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Calculating the magnitude of extreme events by the method outlined in Example 

11.9 requires that the probability distribution function be invertible, that is, for a 

value for T or [F(xT) = T/(T-1)], the corresponding value of xT can be determined. 

Some probability distribution functions are not readily invertible, including the 

Normal and Pearson Type III distributions, and an alternative method of 

calculating the magnitudes of extreme events is required for these distributions. 

 

The magnitude of xT of a hydrological event may be expressed as: 

 

 

(11.49) 

 

which may be approximated by 

 

(11.50) 

 

in the event that the variable analyzed is y = log x, then the same method is 

applied to the statistics for the logarithms of the data, using 

 

(11.

51) 

and the required value of xT is found by taking antilog of yT. 

 

The Frequency factor for Normal Distribution 

 

The frequency factor can be expressed from Eq. (11.50) as 

 

 

(11.52) 

 

This is the same as the standard normal variable z defined in this chapter. 

 

The value of z corresponding to an exceedence probability of p = 1/T can be 

calculated by finding the value of an intermediate variable w: 

 

 

(11.53) 
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then calculating z using the approximation 

 

 

(11.54) 

 

When p > 0.5, 1-p is substituted for p in Eq. (11.53) and the value of z computed 

by Eq.(11.54). 

 

The Frequency factor for Extreme value distribution Type I (EVI) 

 

For the EVI distribution the frequency factor is given by 

 

 

(11.55) 

 

 

 

Extreme value distribution Type II (EVII): 

 

For the Extreme value distribution Type II (EVII) the logarithm of the variate 

follows the EVI distribution. For this case Eq.(11.51) is used to calculate yT, using 

the value of KT from Eq.(11.55). 

 

Log-Pearson Type III distribution. 

 

Log-Pearson Type III distribution the first step is to take the logarithms of the 

hydrologic data, y = log x. Then the mean y, the standard deviation sy and 

coefficient of skewness Cs are calculated for the logarithms of the data. The 

frequency factor depends on the return period T and the coefficient of skewness 

Cs. When Cs= 0, the frequency factor is equal to the standard normal variable z. 

When Cs  0, KT is approximated by  

 

(11.56) 

 

where  k = Cs/6. 

 

The value of z for a given return period can be calculated using Eq.(11.53) & 

(11.54). 
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Example11.11.The annual maximum daily discharge measured on the Beressa river at 

Debere Birhan gauging site are given in Table E11.3. The Beresa river is 

a tributary of Jemma River which is lying in Abay basin and has 

watershed area of 220 km
2
 . Calculate the 5- and 50- year return period 

annual maximum discharge of the Beressa river at Deberebirhan using 

lognormal, EVI,  and log-Pearson Type III distributions. 

 

Table E11.3. Maximum daily discharge of the Beresa River (m3/s) 

Year Q (m3/s) Year Q (m3/s) 

1961 60.4 1980 84.4 

1962 59.5 1981 missed 

1963 82.5 1982 180.0 

1964 90.0 1983 107.1 

1965 32.8 1984 66.8 

1966 75.0 1985 92.0 

1967 58.0 1986 89.4 

1968 112.5 1987 17.9 

1969 151.4 1988 67.7 

1970 80.7 1989 37.4 

1971 144.0 1990 53.5 

1972 63.1 1991 56.1 

1973 81.3 1992 54.5 

1974 163.0 1993 56.6 

1975 83.7 1994 252.2 

1976 140.0 1995 148.7 

1977 58.0 1996 126.0 

1978 74.5 1997 91.9 

1979 101.0   

 

 

Solution: Let X be the maximum annual discharge, then the mean x  = 91.48 m
3
/s , the 

standard deviation sx  = 46.89 m
3
/s, and coefficient of skewness Cs  = 1.4. For the log 10 

data Y = Log(X), then the mean y  = 1.91 m
3
/s , the standard deviation sy = 0.22 m

3
/s, 

and coefficient of skewness Cs  = -0.3971. 

 

Lognormal distribution.. The frequency factor can be obtained from Eq.(11.55). For T = 

50 years, KT = 2.054 

 

Then   

 

 

 

x50 = 10 
2.36 

=229 m
3
/s 

 

Similarly for T = 5 years, KT = 0.842. 
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Then   

 

 

 

x5 = 10 
2.095 

=124 m
3
/s 

 

EVI distribution. The frequency factor can be obtained from Eq.(11.54). For T = 50 

years, KT = 2.592 

 

Then   

 

 

 

 

Similarly for T = 5 years, KT = 0.719. 

 

Then   

 

  

 

 

 

Log-Pearson Type III distribution. For Cs  = -0.3971, the value of K50 is obtained using 

Eq. (11.56), K50  1.834,  

 

 

 

 

 

x50 = 10 
2.313 

=205 m
3
/s 

 

Similarly for T = 5 years, KT = 0.855, and x5 = 125 m
3
/s. 

 

In summary: 

 Return period  

 5 years 50 years 

Lognormal  124 229 

EVI 125 213 

Log-Pearson Type III 125 205 

 

In this example the values of Beressa flood at Deberebirhan estimated by the 

lognormal, EVI and log-pearson Type III distribution are very close to each other. 
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Commonly accepted practice first the data has to be fitted to candidate 

distributions and select the model that describes the observed data very well and 

apply the selected model in estimating  the required flood of a given return period. 

 

11.6  Probability plot 

 

As a check that a probability distribution fit a set of hydrological data, the data 

may be plotted on specially designed probability paper, or using a plotting scale 

that linearizes  the distribution function. The plotted data are then fitted with a 

straight line for interpolation purposes. 

 

Plotting position refers to the probability value assigned to each piece of data to 

be plotted. Numerous methods have been proposed for the determination of 

plotting positions. Most plotting position formulas are represented by : 

 

 

(11.57) 

 

   

Where  m =  is the rank 1 for the maximum, and n is for the minimum value 

 n = the number of data points used in the analysis. 

 b =  0.5 Hazen’s plotting position 

 b =  0.3 Chegodayev’s plotting position 

b =  3/8 Blom’s plotting position 

b =  1.3 Tukey’s plotting position 

b =  0.44 Gringorten’s plotting position 

Example 11.12.   Considering that the probability distribution of the maximum flow of 

the Berassa river used in Example 11.11 follows the Gumbel distribution, 

plot the values on Gumbel paper. 

 

Solution: The data is ranked first col [4], and the plotting position method is chosen, b = 

0.4 Gringorten’s plotting position, and the return period is calculated for the data Col 

[5]. Then the reduced variate yT for the Gumbel distribution is calculated for the T 

associated  

 

 

[1] [2] [3] [4] [5] [6] [7] [8] [9] 

Year Flow  Rank Flow Empirical Emprical 

CDF 

     Gumbel distribution 
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variate 

y 

flow 

 

Flow 

1961 60.4 1 252.2 60.3 0.983 4.091 220.1 252.2 

1962 59.5 2 180.0 22.6 0.956 3.097 183.7 180.0 

1963 82.5 3 163.0 13.9 0.928 2.597 165.4 163.0 

1964 90.0 4 151.4 10.1 0.901 2.256 153.0 151.4 

1965 32.8 5 148.7 7.9 0.873 1.996 143.4 148.7 

1966 75.0 6 144.0 6.5 0.845 1.783 135.7 144.0 

1967 58.0 7 140.0 5.5 0.818 1.603 129.1 140.0 

1968 112.5 8 126.0 4.8 0.790 1.445 123.3 126.0 

1969 151.4 9 112.5 4.2 0.762 1.305 118.2 112.5 

1970 80.7 10 107.1 3.8 0.735 1.177 113.5 107.1 

1971 144.0 11 101.0 3.4 0.707 1.060 109.2 101.0 

1972 63.1 12 92.0 3.1 0.680 0.951 105.2 92.0 

1973 81.3 13 91.9 2.9 0.652 0.849 101.5 91.9 

1974 163.0 14 90.0 2.7 0.624 0.753 97.9 90.0 

1975 83.7 15 89.4 2.5 0.597 0.661 94.6 89.4 

1976 140.0 16 84.4 2.3 0.569 0.573 91.4 84.4 

1977 58.0 17 83.7 2.2 0.541 0.489 88.3 83.7 

1978 74.5 18 82.5 2.1 0.514 0.407 85.3 82.5 

1979 101.0 19 81.3 1.9 0.486 0.327 82.4 81.3 

1980 84.4 20 80.7 1.8 0.459 0.249 79.5 80.7 

1982 180.0 21 75.0 1.8 0.431 0.172 76.7 75.0 

1983 107.1 22 74.5 1.7 0.403 0.096 73.9 74.5 

1984 66.8 23 67.7 1.6 0.376 0.021 71.2 67.7 

1985 92.0 24 66.8 1.5 0.348 -0.054 68.4 66.8 

1986 89.4 25 63.1 1.5 0.320 -0.129 65.7 63.1 

1987 17.9 26 60.4 1.4 0.293 -0.206 62.9 60.4 

1988 67.7 27 59.5 1.4 0.265 -0.283 60.0 59.5 

1989 37.4 28 58.0 1.3 0.238 -0.363 57.1 58.0 

1990 53.5 29 58.0 1.3 0.210 -0.445 54.1 58.0 

1991 56.1 30 56.6 1.2 0.182 -0.532 50.9 56.6 

1992 54.5 31 56.1 1.2 0.155 -0.624 47.6 56.1 

1993 56.6 32 54.5 1.1 0.127 -0.724 43.9 54.5 

1994 252.2 33 53.5 1.1 0.099 -0.836 39.8 53.5 

1995 148.7 34 37.4 1.1 0.072 -0.968 35.0 37.4 

1996 126.0 35 32.8 1.0 0.044 -1.138 28.8 32.8 

1997 91.9 36 17.9 1.0 0.017 -1.411 18.8 17.9 

 

with the plotting position and the flow data col [7]. The Gumbel predicted flow is done in 

Col. [8] using Eq.(11.42). Then plot the predicted col [8] and observed col [9] flows on 

the Gumbel scale with x- axis being col [7].   It is seen that the data fits well the Gumbel 

distribution except at the extreme value.   
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11.7.  Testing for outliers 

 

Outliers are data points that depart significantly from the trend of the remaining 

data. The retention and deletion of these outliers significantly affect the 

magnitude of the statistical parameters computed from the data, especially small 

sample size.  

 

Water Resources Council (1981) recommends that if the station skew is greater 

than +0.4, tests for high outliers are considered first; if the station skew is less 

than –0.4, test for low outliers are considered first. Where the station skew is 

between  0.4, test for both high and low outliers should be applied before 

eliminating any outliers from the  date set. 

 

The following frequency equation can be used to detect high outliers: 

 

(11.58) 

 

Where;   yH   =  the high (+) / low (-) outlier threshold in log units 

Kn = values are Given in Table 11.3 for one sided test that detect 

outlier at the 10-percent level of significance in normally 

distributed data. 

 

If the logarithms of the values in a sample are greater / less than yH in the above 
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equation, then they are considered high / low outlier. 

 

 

Table 11.3 Outlier test Kn value  

Sample 
size n 

Kn Sample 
size n 

Kn Sample 
size n 

Kn Sample 
size n 

Kn 

10 2.036 24 2.467 38 2.661 60 2.837 

11 2.088 25 2.486 39 2.671 65 2.866 

12 2.134 26 2.502 40 2.682 70 2.893 
13 2.175 27 2.519 41 2.692 75 2.917 

14 2.213 28 2.534 42 2.700 80 2.940 

15 2.247 29 2.549 43 2.710 85 2.961 
16 2.279 30 2.563 44 2.719 90 2.981 

17 2.309 31 2.577 45 2.727 95 3.000 

18 2.335 32 2.591 46 2.736 100 3.017 

19 2.361 33 2.604 47 2.744 110 3.049 
20 2.385 34 2.616 48 2.753 120 3.078 

21 2.408 35 2.628 49 2.760 130 3.104 

22 2.429 36 2.639 50 2.768 140 3.129 
23 2.448 37 2.650 55 2.804   

 

 

Example 11.13.  Check the data given in Example 11.11 for outliers? 

 

Solution: The mean and standard deviation of log transformed peak flow with 

sample size n = 36 are 1.9089 m
3
/s and 0.2217 m

3
/s respectively. For n = 36 the 

value of Kn = 2.639. 

 

 

 

    

             = 2.485 &  1.31933 

 

   Corresponding to Q = 305 m
3
/s and  21 m

3
/s. 

 

The maximum value is 257 m
3
/s and the minimum is 17 m

3
/s. It is seen that low 

outlier is found but it is very near to the boundary of 21 m
3
/s. So the data may be  

acceptable in a sense that no outlier is found. However, one should check the 

reason behind the low outlier, by comparing to the rainfall in the rainy months of 

June, July, and August of the year 1987. 
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11.8  Practice problems 

 

11.1 The values of annual rainfall at Addis Ababa from 1900 to 1990 are given in 

Table Find the mean, standard deviation, coefficient of variation, and skewness 

for two period: (a) for data from 1900 – 1945, and 1946 –1990. Fit the data using 

normal distribution and check its goodness of fit over the two periods indicated. 

Plot the data normal probability paper to check its fitness. 

 

11.2 Fit the data of the peak flood of the Beresa river (given in Example 11.11) using 

log-Pearson Type III distribution. Plot is in log-Pearson paper  

 

11.3 The record of annual peak discharge at a stream gaging station is as follows: 

 

year 1961 1962 1963 1964 1965 1966 1967 1968 1969 

Q 

(m
3
/s) 

45.3 27.5 16.9 41.1 31.2 19.9 22.7 59.0 35.4 

 

Determine using the lognormal distribution: 

 

(a) The probability that an annual flood peak of 42.5 m
3
/s will not be exceeded. 

(b) The return period of the dischrge of 42.5 m
3
/s 

(c) The magnitude of a 20-year flood 
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